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Use of Frequency Derivatives in the Three-
Dimensional Fulll-Wave Spectral Domain Technique

Joseph E. Pekarek and Tatsuo Itoh, Fellow, IEEE

Abstract— Rational function approximations are used to ex-
trapolate the frequency response of the scattering coefficients
of three-dimensional (3-D) structures. The rational functions
are constructed by applying Pad6 approximation techniques to
single frequency solutions of the currents and the derivatives of
the currents with respect to frequency. ‘The currents and cur-
rent derivatives are computed using a modified spectral domain
technique. The efficiency of the method, along with the direct
determination of the poles and zeros of the transfer function,
make the method well-suited for model-based parameter estima-
tion (MBPE). Multiple-frequency-point Pad6 approximations are
also investigated.

I. INTRODUCTION

THE PASSIVE structure models used by current mi-

crowave circuit design CAD tools im required to cover a
broad range of parameter vahtes and frequency points. It is ex-

tremely difficult to obtain models for many passive structures
that are accurate for all ranges and combinations of design
parameters. An alternate approach to this problem is to use
more specialized models that operate over a more narrow range
of design parameters and frequencies. This approach involves
the generation of passive models tailored to the particular
technology that is used for the design. Fclr example, monolithic
microwave/millimeter wave integrated circuit (MMIC) design

requires microstrip-type passive structures with a relative

dielectric constant of 12.9 with a fixed or small set of dielectric
substrate heights. For a particular grcmp of designers, the

frequency ranges of interest are often much more narrow than
would be required by a general model. This restriction on the
range of design parameters allows much more accurate models
to be generated for more specialized design purposes. Since
the possible sets of ranges for all the different technologies and
frequency bands would entail an extremely large set of models,
it is desirable to have a method for generating these models
automatically using numerical electromagnetic simulation. In
this paper a method for a generating pole-zero based models
from electromagnetic simulations is presented,

The presented method determines the currents and the
derivatives of the currents with respect to frequency us-
ing a modified spectral domain technique (SDT). The im-
plementation of the method of moments using frequency
derivative information has been demonstrated in [1]–[5] for
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free-space scattering problems. The method used in this work
for determining the wideband frequency response from the

single frequency response and its derivatives is very simi-
lar to the Cauchy method presented in [5]. The significant

contribution of this work is the incorporation of frequency
derivative information into the SDT. The extrapolation of
the frequency response of a three-dimensional (3-D) structure
from information computed at one or two frequency points
is used to demonstrate the method. A related technique is
asymptotic-waveform-evaluation (AWE) [6], where low-order
rational functions are used to approximate circuit responses.
In [1]–[6], efficient methods for determining the required
derivatives are available, whereas the functional form of

the SDT Green’s functions requires an analytically complex
frequency derivative evaluation.

In order to obtain the frequency derivative information in a

computationally efficient manner, a database approach is used
which is similar to the database approach described in [7] and
[8] for the determination of the moment matrix. The general
approach is extended to allow not only the generation of the
moment matrix from the database, but also the derivatives of
the moment matrix with respect to frequency. This allows the
computationally expensive derivative computations to be per-
formed once for a given substrate and enclosure configuration,
and then the results can be used for later calculations of various

structures that use the same substrate and enclosure.
The extrapolation of the frequency response provides wide-

band information from information at a single frequency
point. The proposed method is particularly well-suited to
the simulation of structures with sharp resonances in their
frequency response. The computation of the current solution
requires an O (N3 ) algorithm, while the computation of the

derivatives of the current solution uses an 0(N2 ) algorithm.
An order of magnitude or more decrease in the analysis
time required to determine the frequency response is not
uncommon.

II. BASIC PRINCIPLES

A. Model-Based Parameter Estimation

The use of model-based parameter estimation (MBPE) in
electromagnetic allows the approximation of the electromag-
netic behavior by a mathematical model that is chosen to
represent the underlying physics of the problem [9]. The
application of the MBPE technique to the approximation of
distributed circuit transfer functions is based on the premise
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that the desired N-port frequency response is

mated by a rational function of the form [4]

M

well approxi-

(1)

To accurately describe the frequency response over the

entire infinite bandwidth, the order of the numerator and
denominator (M’ and P, respectively) would be infinite. How-
ever, a lower-order ill and P can be used to provide an
accurate approximation of the response in a more limited
bandwidth.

B. Pad4 Approximation

The functional form for the current distribution on the

surface of the conductors will be an analytic function of
frequency. The N-port parameters computed directly from

the current distributions will also be analytic functions with
respect to frequency. The concept of analytic continuation
allows expression of the desired frequency response as a Tay-
lor’s series expanded about a fixed frequency f.. A truncated
version of the Taylor series of the response is given by

s(f) E c(f) = f Ci(f – fo)’ (2)
‘L=O

where the coefficients c, are found directly from the frequency

derivatives evaluated at fo. The number of terms in the series
is N + 1 where N is the number of frequency derivatives to be
computed. The Pad6 approximation technique is a method for
finding the coefficients of the rational function approximation
in (2), such that the derivatives (also referred to as moments)
of the rational function and the truncated Taylor series are

equal at ~ = f. up to order N. A more thorough explanation

and an implementation of the Pad6 technique is given in [10].

C. Spectral Domain Method

The method of solution for the electromagnetic problem is

based on the spectral-domain method applied to 3-D circuits
in a rectangular PEC enclosure filled with a planar, piece-
wise constant stratified media similar to the approach taken
in [7], [8], and [11]. The currents on the conductors will be

spatially discretized using rooftop basis functions for the z
and y currents and rectangular cross-section current vias for
z-directed currents as shown in Fig. 1.

D. Determination of Derivatives of Current Distribution

The spectral domain method leads to the following set of
linear equations, where each ZUU term represents a submatrix

F: ~ a[d=H‘3)

Fig. 1. Example current subsections.

An example entry for the submatrix ZZY will be given as

(4)

which expresses the coupling of basis p to basis q and the index

i is a double index over the modes in the spectral domain. The
transforms of the current basis given for the example above as

~YPz and ~Zqi are constant with respect to frequency; hence,
the derivatives of the moment matrix entries with respect to
frequency can be found from

d“Z:; _
—-x

dnG&z ,,

dfn
.7ypiJzqi dfn ‘

‘i
(5)

which is seen to be identical to the moment matrix entry with
the algebraic spectral domain Green’s function replaced with

its nth-order derivative. Consequently, the derivative of the
moment matrix can be computed using the same database
technique as is employed for the nondifferentiated moment
matrix. Fast Fourier transforms (FFT’s) are used to generate
the databases for each dyadic Green’s function component.

The solution of the SD equations will be expressed in the
more compact notation as

[J] = [z]-’[E]. (6)

For the determination of a rational function approximation,

it is desired to find the derivatives of the current with respect to
frequency. The differentiation can be generalized for nth-order
differentiation as (similar to [4])

dn [J]
-[z]-] ~ (T)=* (7)~= ,

~=o...n_l

which provides a recursive method of determining the higher-
order derivatives of the current from the derivatives of the
moment matrix found above. The computation of the nth-order

current derivatives requires the derivatives of the moment

matrix from order one to N.

E. Derivatives of Green’s Functions

The algebraic spectral domain Green’s functions need to
be differentiated with respect to frequency, using an analytic
differentiation procedure. The functional form for the planar
Green’s functions (z and y currents only) for a two layer
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Fig. 2. De-embedding sections.

dielectric (a single substrate and air) configuration can be

expressed as shown in (8) at the bottom of the page.
Differentiation of the Green’s function with respect to

frequency leads to a very complex expression. It can be shown
that higher-order derivatives will lead to exponentially more
complex computations as the order of the derivative increases.
For this work, a maximum differentiation order of 12 will be
used.

III. DE-EMBEDDING

Using the structure in Fig. 2 as an example, it is desired

to find the scattering parameters of the structure from the
reference plane at RPL to the reference plane at RPR. The
excitation for the problem is applied as a gap voltage source
at the edge of the enclosure at the ports PL and PR.
The de-embedding procedure involves finding the solution
(including the effects of port discontinuities and the feed
lines) of the entire structure and its clerivatives, and then
removing the effects of the port discontinuities and feed

lines. A differentiable de-embedding procedure allows the de-

embedding of the solution and its derivatives directly, with
the result being the solution and its derivatives for the de-

embedded section of the structure.
The two-port problem is illustrated as shown in Fig. 2

where [AD] is the desired de-embedded chain matrix. The
de-embedding chain matrices are given by

[Dd = [PL][L~]

[DR] = [LR][P~] (9)

where [PL] and [P~] m-ethe port discontinuity chain matrices

of the left and right ports, respectively, and [L~] and [LR] are
the chain matrix representations of the uniform transmission
line sections leading up to the desired reference planes. The
de-embedding matrices for each port are computed from the
results of the simulations of two de-embedding standards,

where one standard is twice the length of the other as discussed

in [7]. In a conventional de-embedding procedure, the chain

matrix for the de-embedded section (designated [Ad]) is then
found from

[A,] = [DL]-’[At][D~]-l (lo)

where [At] is the chain matrix of the entire structure.
For the differentiable de-embedding procedure, the chain

matrix of the entire structure and all the computed higher-order
derivatives of the entire structure are used in the de-embedding
process. The term “derivatives” will be interpreted as the

derivatives of a variable with respect to frequency, evaluated

at a particular frequency. The chain matrix and its derivatives
(n)

are given as [At ] where n is the order of the derivative.
Similarly, the chain matrix and the computed higher-order
derivatives of the inverse of the de-embedding sections will
be given by [(D~l ) (n)] and [(D~l)(n)]. The de-embedded
solution and the derivatives of the. de-embedded solution
are found from repeated application of the chain rule as
demonstrated below

[A!)] = [(D;l)(0)][AjO) ][(D~l)(O)]

[A$)] = [(D;l)(l)][A~O) ][(D;l)(0)] + [(D;l)(0)][A~l)]

. [(D~’)(0)]+ [(D;l)fOJ][A$O)][@~l)(’)]

[A$?] = . . .

(11)

Once the chain matrix and the higher-order derivatives
of the de-embedded solution are computed, any other port

parameter (and its derivatives) can be found by application

of standard differentiation rules to the port parameter trans-
formations. A rational function approximation of the desired
transfer function can then be found from the derivatives of the
de-embedded solution.

IV. SAMPLE NUMERICAL RESULTS

A. Meander Line

A point-by-point frequency simulation of the meandering
line shown in Fig. 3 is compared to a MBPE simulation of
the same structure. The response and the derivatives up to the
12th order at 9 GHz are used to determine a rational function
with a sixth-order numerator and denominator. The results.
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Fig. 3. Meander line structure from [11].
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Fig. 4. Magnitude of S11 of meander line.
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Fig. 5. Magnitude of Sz 1 of meander line.

along with results and measured data from [11 ], are shown in
Figs. 4 and 5.

The log of the error between the swept approach and the
MBPE approach is shown in Fig. 6 for the magnitude and
angle of SM.

B. Spiral Inductor

A multiple-frequency-point Pad6 approximation will be
used to determine the MBPE approximation of SZZ for the
spiral inductor shown in Fig. 7. The procedure for determin-

ing the multiple-frequency-point Pad6 approximation is very
similar to the Cauchy method in [5]. The derivatives up to
12th order at the two expansion points are used to determine a
rational function with a 12th-order numerator and a 13th-order
denominator. The results of the de-embedded simulation will
be compared to simulated and measured results in [12].

A comparison of the magnitude of S22 is shown in Fig. 8.
The results from [12] are for an open substrate simulation,

2
--- Iog(error of 1S211)

-.. . . .
0369121518 2124

Frequency (GHz)

Fig. 6. Comparison of swept S’21 to the MBPE of S21.

Fig. 7. Spiral inductor example from [12].
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Fig. 9. Error for a multiple-frequency-point Pad& approximation.

whereas the presented simulation method is for an enclosed
substrate region. The difference between the presented sim-
ulation and the simulation from [12] can be attributed to
the radiation loss from the open substrate simulation. The

MBPE approximation was computed from the currents and
their derivatives at both 8 GHz and 16 GHz. The difference

between the MBPE solution and the point-by-point frequency
swept solution is shown in Fig,. 9.

C. Computation Times

The time required to compute the solution for each fre-
quency point and the time required to compute the expan-
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TABLE I
TIME COMPARISONSFOR MEANDER LINE ANALYSIS

I MBPE Point-by-, .Point (2, 2.5...13 GHz)

E

Database Gene~atiorr I freq, point 5,1 min. 0,2min.

Current Solve Time/ fieq. point 13.7 min. 8.2 min.

Total Solution Time / freq. point 19 min. 8.6 min.

Total Database Computation 5.1 min. 4,6 min.

Total Current Solve Time 13.7 min. 188.6 min.

Total Solution Time 19 min. 197.8 mirL

TABLE II
TIME COMPARISONSFOR SPIRALINDUCTOR ANALYSIS

b:~

MBPE Point-b -Point (4.6, 4.8...19 GHz)

Database Generation /&e oint 35,6 min.

4 -J. ,.”!.. I . J lull,.

Total Current Solve Time 50 min. 1095 min.

Total Solution Time 122 min. 1148,3 ruin,

Fig. 10. Example Stripline Circuit.

SubstrateOim.
640umx S40um

sion for the MBPE at each frequency point are given along
with total time comparisons for the swept responses in the
frequency ranges where the errors are within one percent.

The time required to compute the derivative database is
listed separately since this computation only needs to be

performed once for a given substratelenclosure configuration
and expansion frequency. For both the meander line and spiral
simulations, the MBPE approach is shown to be about an
order of magnitude faster than the point-by-point approach. If a
precomputed derivative database is used, then the meander line
computation time is 14 times faster, and the spiral computation
time is 23 times faster.

V. BANDWIDTH ESTIMATION

A. Sample Circuit One

The example stripline circuit shown in Fig. 10 is used ~o
study the behavior of the rational function approximations. The
circuit has a frequency response with many close resonances.
The simulated response for lS1l I is shown in Fig. 11 for a
point-by-point frequency sweep and an MBPE response. The
expansion frequency is 46 GHz, and derivatives up to the
12th order are used to find a rational function with both the

numerator and denominator of order six. The two responses
are in very close agreement from about 37 GHz to about 75
GHz.

1

m
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0.2

Fig. 11. S1 I of stripline circuit (expansion frequency = 46 GHz).
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Fig. 12. Log(Error) in S11 for stripline circuit (expansion at 46 GHz),

B. Accuracy Versus Expansion Frequency

The MBPE response of the example circuit shown in Fig. 10
is found for individual expansion points from 40 GHz to 51
GHz. For each expansion point, the MBPE response is found
from the response and the derivatives up to the 12th order at
the expansion point only. The graph shown in Fig. 12 shows
the results for /SllIexpanded about 46 GHz. The~ight y-axis
of the graph shows the log of the error. The poles and zeros of
the rational function are also shown on the same graph where
the real x-axis is used as the imaginary frequency axis. The

poles and zeros are shown on the same plot to demonstrate
the connection between the accuracy of the MBPE response

and the pole and zero locations.
A plot of the bandwidth of the approximation as a function

of the expansion frequency is shown in Fig. 13. The bandwidth
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Fig. 15. Example stripline circuit-2.

is defined as

bandwidth = ‘~,~~ ~100%,
ex

(12)

where ~l@tr and fl~~ are the upper and lower bounds where
the approximation is within one percent of the point-by-point
frequency swept solution.

C. Accuracy Versus the Order of the Approximation

The order of the numerator (M) is set equal to the order
of the denominator (P) or one less than the order of the
denominator (P – 1). The order of the rational function is
expressed as the sum of the orders of the numerator and the
denominator (P + M). The number of frequency derivatives
used for the Pad6 approximation is equal to the order of the
rational function (M + P). The results Me shown in Fig. 14.

D. Sample Circuit Two

The circuit shown in Fig. 15, referred to as circuit-2, is
very similar to the previous stripline circuit except it has less
resonant sections, which results in less poles and zeros in the
same frequency band. Derivatives up to the 12th order at a
single frequency are used to find a rational function with both
the numerator and denominator of order six.

1

0.8

0.2

Fig. 16. S1 I of stripline circuit-2 (expansion at 42 GHz).
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Fig. 17. Log (error) in .s1I for stripline circuit-2 (expansion at 42 GHz).

The simulated response for ISII I is shown in Fig. 16 for
a point-by-point frequency sweep and an MBPE response.
The expansion frequency is 42 GHz. The two responses agree
very well over the entire 1 GHz to 100 GHz bandwidth. The
improved bandwidth results from fewer poles and zeros near

the expansion point. The poles and zeros of circuit-2 are shown
in Fig. 17 along with the error between the swept and MBPE
responses.

VI. CONCLUSION

A method for determining the frequency response of 3-D
microwave structures from information at a single frequency
point was demonstrated. The principle advantages of the
method are reduced computation times and the direct deter-
mination of the poles and zeros of the frequency response.
The presented examples demonstrated “order of magnitude”
decreases in computation times as compared to point-by-point
frequency swept simulations. The direct determination of the
poles and zeros eliminates the need for closely-spaced fre-
quency points in a point-by-point swept frequency simulation.
The method is capable of determining shin-p resonances in the
transfer function response that would possibly go unnoticed
in a point-by-point simulation. The results show a definite

connection between the accuracy of the rational function
extrapolation and the positions of the poles and zeros of the

transfer function relative to the expansion point.
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